محققان دانشگاه صنعتی امیرکبیر دستگاهی ساخته اند که راهکارهایی بر اساس الگوریتمهای پیشرفته برای پایش وضعیت عیوب و خرابی سیستمهای صنعتی ارائه میدهد.
به گزارش خبرگزاری صدا و سیما؛ وحید صفری دهنوی با راهنمایی دکتر مسعود شفیعی از اعضای هیات علمی دانشگاه صنعتی امیرکبیر طرحی با عنوان ساخت دستگاه جمع آوری تحلیل و پردازش داده صنعتی برای تشخیص عیب و پایش وضعیت موتورها با قابلیت اتصال به اتوماسیون را اجرایی کرد.
شفیعی عضو هیات علمی گفت: در موتورها به علل گوناگونی عیوب متفاوتی رخ میدهد و تشخیص زودهنگام عیوب و در گام بعد پیش بینی زمان خرابی این سیستمها از اهمیت بالایی برخوردار است؛ چراکه منجر به کاهش هزینه و خطرات جانی پرسنل خواهد شد.
وی افزود: با توجه به نیاز راهکارهای نوآورانه جهت بهبود عملکرد سیستمهای صنعتی پیشرفته و کاهش هزینهها در صنایع تولیدی، این پژوهش با تأکید بر استفاده از هوش مصنوعی و الگوریتمهای پیشرفته اقدام به ارایه روشهایی جهت پایش وضعیت و تشخیص عیب در موتورها کرده است.
شفیعی تاکید کرد: کاهش هزینههای تعمیر و نگهداری و همچنین هرینه ناشی از خرابی موتورها و همچنین کاهش خطرات جانی پرنسل از دستاوردها و نتایج این تحقیق به شمار میرود.
ین استاد دانشگاه صنعتی امیرکبیر با بیان اینکه با توسعه این پژوهش، فناوری سلامت سنجی صنعتی بهبود خواهد یافت و علاوه بر کاهش هزینه، منجر به توسعه تکنولوژی صنعتی میشود، یادآور شد: تحقیقات انجام شده بهبود قابل توجهی در کارایی و عملکرد تجهیزات تولیدی ایجاد کرده و کاهش هزینههای تعمیراتی و خرابیهای ناگهانی را فراهم آورده است که این امر بهبود شرایط اقتصادی و مالی صنایع تولیدی را ایجاد میکند.
صفری دهنوی محقق طرح در خصوص روشهای اجرای این طرح تحقیقاتی اظهار کرد: فرایند اجرای این مطالعات شامل طراحی و پیاده سازی الگوریتمهای هوش مصنوعی جهت تشخیص زودهنگام و بلادرنگ عیوب در تجهیزات تولیدی بوده است. این الگوریتمها یک دستگاه و سامانه یکپارچه ادغام شدهاند که قادر به ثبت و جمع آوری دادهها، پردازش آنها و پایش و تشخیص عیوب موتورها است.
صفری یکی از مشکلات اصلی در اجرای طرح را نیاز به دستگاههای جمع آوری داده فرکانس بالا عنوان کرد و ادامه داد: از جمله پیچیدگیهای دیگر طرح وزن گذاری مناسب و استفاده از الگوریتمهای یادگیری جمعی برای دستیابی به دقت بالا در تشخیص عیوب بوده است.
وی گفت:نتایج این طرح تحقیقاتی قابل استفاده در صنایع مختلف از جمله صنایع فولاد، ذوب آهن، صنایع کوچک و متوسط و صنایع نفتی و گاز است.
صفری امکان ثبت و جمع آوری داده با فرکانس بالا، پردازش داده با استفاده از الگوریتمهای هوش مصنوعی و تشخیص عیوب مکانیکی و الکتریکی را از ویژگیهای و نتایج این طرح دانست و گفت این طرح دارای نمونه خارجی مانند دستگاههای All test pro هست و از جمله مزایای رقابتی این پژوهش میتوان به کاهش هزینههای تعمیراتی و افزایش دقت در تشخیص عیوب اشاره کرد.
این طرح در بین ۱۶ طرح برگزیده دانشگاه صنعتی امیرکبیر جهت توسعه و تجاری سازی قرار گرفت.